The psychedelic genes of maize redundantly promote carbohydrate export from leaves.
نویسندگان
چکیده
Whole-plant carbohydrate partitioning involves the assimilation of carbon in leaves and its translocation to nonphotosynthetic tissues. This process is fundamental to plant growth and development, but its regulation is poorly understood. To identify genes controlling carbohydrate partitioning, we isolated mutants that are defective in exporting fixed carbon from leaves. Here we describe psychedelic (psc), a new mutant of maize (Zea mays) that is perturbed in carbohydrate partitioning. psc mutants exhibit stable, discrete chlorotic and green regions within their leaves. psc chlorotic tissues hyperaccumulate starch and soluble sugars, while psc green tissues appear comparable to wild-type leaves. The psc chlorotic and green tissue boundaries are usually delineated by larger veins, suggesting that translocation of a mobile compound through the veins may influence the tissue phenotype. psc mutants display altered biomass partitioning, which is consistent with reduced carbohydrate export from leaves to developing tissues. We determined that the psc mutation is unlinked to previously characterized maize leaf carbohydrate hyperaccumulation mutants. Additionally, we found that the psc mutant phenotype is inherited as a recessive, duplicate-factor trait in some inbred lines. Genetic analyses with other maize mutants with variegated leaves and impaired carbohydrate partitioning suggest that Psc defines an independent pathway. Therefore, investigations into the psc mutation have uncovered two previously unknown genes that redundantly function to regulate carbohydrate partitioning in maize.
منابع مشابه
Tie-dyed2 functions with tie-dyed1 to promote carbohydrate export from maize leaves.
Regulation of carbon partitioning is essential for plant growth and development. To gain insight into genes controlling carbon allocation in leaves, we identified mutants that hyperaccumulate carbohydrates. tie-dyed2 (tdy2) is a recessive mutant of maize (Zea mays) with variegated, nonclonal, chlorotic leaf sectors containing excess starch and soluble sugars. Consistent with a defect in carbon ...
متن کاملTocopherol deficiency reduces sucrose export from salt-stressed potato leaves independently of oxidative stress and symplastic obstruction by callose
Tocopherol cyclase, encoded by the gene SUCROSE EXPORT DEFECTIVE1, catalyses the second step in the synthesis of the antioxidant tocopherol. Depletion of SXD1 activity in maize and potato leaves leads to tocopherol deficiency and a 'sugar export block' phenotype that comprises massive starch accumulation and obstruction of plasmodesmata in paraveinal tissue by callose. We grew two transgenic St...
متن کاملRNAi-mediated tocopherol deficiency impairs photoassimilate export in transgenic potato plants.
Tocopherols (vitamin E) are lipophilic antioxidants presumed to play a key role in protecting chloroplast membranes and the photosynthetic apparatus from photooxidative damage. Additional nonantioxidant functions of tocopherols have been proposed after the recent finding that the Suc export defective1 maize (Zea mays) mutant (sxd1) carries a defect in tocopherol cyclase (TC) and thus is devoid ...
متن کاملThe maize golden2 gene defines a novel class of transcriptional regulators in plants.
In the C4 plant maize, three photosynthetic cell types differentiate: C4 bundle sheath, C4 mesophyll, and C3 mesophyll cells. C3 mesophyll cells represent the ground state, whereas C4 bundle sheath and C4 mesophyll cells are specialized cells that differentiate in response to light-induced positional signals. The Golden2 (G2) gene regulates plastid biogenesis in all photosynthetic cells during ...
متن کاملSucrose transporter1 functions in phloem loading in maize leaves
In most plants, sucrose is exported from source leaves to carbon-importing sink tissues to sustain their growth and metabolism. Apoplastic phloem-loading species require sucrose transporters (SUTs) to transport sucrose into the phloem. In many dicot plants, genetic and biochemical evidence has established that SUT1-type proteins function in phloem loading. However, the role of SUT1 in phloem lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 185 1 شماره
صفحات -
تاریخ انتشار 2010